An approach to water supply clusters by semi-supervised learning

نویسندگان

  • David A. Swayne
  • Wanhong Yang
  • A. A. Voinov
  • M. Herrera
  • J. Izquierdo
چکیده

The rational distribution of water in a water supply network (WSN) is a complex problem, especially for systems of large scale. Its complexity is continually increasing from the point of view of technical management. The division of WSN into hydraulic zones is a partition of the supply network into subsystems with controlled inputs and outputs, building smaller independent networks. This solution is a strategic option used in many cities worldwide to control and operate their systems seeking to improve the WSN management, working with each part as a whole. Looking for leaks, detecting water distribution anomalies or carrying out rehabilitation plans, are instances of the aspects that can be technically improved by this reduction of the inspection area. For these reasons, it is important to design the hydraulic zones structure in some optimal way. In this paper, we propose a semi-supervised learning to approach it. To do it we add the different supply constraints to the adjacency matrix of the graph and then gathering the reality of the hydraulic zones in a single matrix. The next step splits the network, applying to it a spectral clustering algorithm. This methodology offers an adequate solution to the hydraulic zones paradigm through clusters that allow the conditions for the zones to become small quasi-independent water supply networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Minimum Density Hyperplanes

Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is a central assumption in statistical and machine learning approaches for the classification of unlabelled data. In unsupervised classification this cluster definition underlies a nonparametric approach known as density clustering. In semi-supervised classification, cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010